什么是命题,什么是命题举例
很多朋友对于什么是命题和什么是命题举例不太懂,今天就由小编来为大家分享,希望可以帮助到大家,下面一起来看看吧!
命题的定义是什么?
定义原指对事物做出的明确价值描述。
命题是指一个判断(陈述)的语义(实际表达的概念),这个概念是可以被定义并观察的现象。
真命题一种逻辑学术语。在数学中把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。命题真值只能取两个值:真或假。真对应判断正确,假对应判断错误。任何命题的真值都是唯一的,称真值为真的命题为真命题。
每一个命题都有逆命题,只要将原命题的题设改成结论,并将结论改成题设,便可得到原命题的逆命题。但是原命题正确,它的逆命题未必正确。
例如真命题“对顶角相等”的逆命题为“相等的角是对顶角”,此命题就是假命题。命题通常写成“如果......那么......”的形式 。“如果”后面接题设,“那么”后面接结论。
扩展资料
命题的形式
1、对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题。
2、对于两个命题,如果一个命题的条件和结论分别是另外一个命题的条件的否定和结论的否定,那么这两个命题叫做互否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的否命题。
3、对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆否命题。
命题是什么意思 命题简单释义
1、命题是一个非真即假(不可兼)的陈述句。
2、有两层意思,首先命题是一个陈述句,而命令句、疑问句和感叹句都不是命题。
3、其次是说这个陈述句所表达的内容可决定是真还是假,而且不是真的就是假的,不能不真又不假,也不能又真又假。凡与事实相符的陈述句为真语句,而与事实不符的陈述句为假语句。
4、这就是说,一个命题具有两种可能的取值(又称真值)为真或为假,又只能取其一。通常用大写字母T表示真值为真,用F表示真值为假,有时也可分别用1和0表示它们。因为只有两种取值,所以这样的命题逻辑称为二值逻辑。我们把以这种非真必假的命题作为研究对象的逻辑称为古典逻辑,但也有人反对关于命题的这种观点,认为存在既不真也不假的命题,例如:直觉主义逻辑、多值逻辑等。
什么是命题,特征是什么?
命题是指一个判断(陈述)的语义(实际表达的概念),这个概念是可以被定义并观察的现象。命题不是指判断(陈述)本身,而是指所表达的语义。当相异判断(陈述)具有相同语义的时候,他们表达相同的命题。在数学中,一般把判断某一件事情的陈述句叫做命题。
关于什么是命题和什么是命题举例的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。